Close
  Indian J Med Microbiol
 

Figure 4: Synaptic plasticity was assessed by synaptophysin expression in the hippocampus of rats by immunohistochemistry. A: Sections show normal synaptophysin expression. B, E, F: Sections show reduced expression of synaptophysin which is represented by weak brown stain (shown by arrows) intensity (borderline to weak) in cells. C, D, G, H: Sections show strong staining (shown by arrows) intensity (moderate to strong) in cells. (Magnification 10×). A: normal control; B: normal control treated with lead acetate; C: normal control animals treated with lead acetate and atomoxetine; D: normal control animals treated with lead acetate and Celastrus paniculatus oil; E: social isolated; F: socially isolated animals treated with lead acetate; G: socially isolated animals treated with lead acetate and atomoxetine; H: socially isolated animals treated with lead acetate and Celastrus paniculatus oil.

Figure 4: Synaptic plasticity was assessed by synaptophysin expression in the hippocampus of rats by immunohistochemistry. A: Sections show normal synaptophysin expression. B, E, F: Sections show reduced expression of synaptophysin which is represented by weak brown stain (shown by arrows) intensity (borderline to weak) in cells. C, D, G, H: Sections show strong staining (shown by arrows) intensity (moderate to strong) in cells. (Magnification 10×). A: normal control; B: normal control treated with lead acetate; C: normal control animals treated with lead acetate and atomoxetine; D: normal control animals treated with lead acetate and <i>Celastrus paniculatus</i> oil; E: social isolated; F: socially isolated animals treated with lead acetate; G: socially isolated animals treated with lead acetate and atomoxetine; H: socially isolated animals treated with lead acetate and <i>Celastrus paniculatus</i> oil.