Impact Factor 2019 : 1.903 (@Clarivate Analytics)
  • Users Online: 113
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2021  |  Volume : 11  |  Issue : 5  |  Page : 222-230

Honokiol attenuates oxidative stress-induced cytotoxicity in human keratinocytes via activating AMPK signaling


Anti-Aging Research Center, Dong-eui University, Busan 47340; Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea

Correspondence Address:
Yung Hyun Choi
Anti-Aging Research Center, Dong-eui University, Busan 47340; Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227
Republic of Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2221-1691.311770

Get Permissions

Objective: To investigate the effect of honokiol on oxidative damage in HaCaT human keratinocytes. Methods: HaCaT cells were exposed to hydrogen peroxide (H2O2), following pretreatment with various concentrations of honokiol. The alleviating effects of honokiol on HaCaT cell viability and cell death, reactive oxygen species (ROS) production, DNA damage, mitochondrial dynamics, and inhibition of adenosine triphoaphate production against H2O2 were investigated. Western blotting analysis was used to analyze the expression levels of specific proteins. Results: Honokiol suppressed H2O2-induced cytotoxicity and DNA damage by blocking abnormal ROS accumulation. Honokiol also prevented apoptosis by inhibiting loss of mitochondrial membrane potential and release of cytochrome c from the mitochondria into the cytosol, decreasing the Bax/Bcl-2 ratio, and reducing the activity of caspase-3 in H2O2-stimulated HaCaT cells. In addition, honokiol attenuated H2O2-induced reduction of adenosine triphosphate content, and activation of AMP-activated protein kinase (AMPK) was markedly promoted by honokiol in H2O2-stimulated cells. Importantly, the anti-apoptosis and anti-proliferative activity of honokiol against H2O2 was further enhanced by adding an activator of AMPK, indicating that honokiol activated AMPK in HaCaT keratinocytes to protect against oxidative damage. Conclusions: The present results indicate that honokiol may be useful as a potential therapeutic agent against various oxidative stress-related skin diseases.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed236    
    Printed0    
    Emailed0    
    PDF Downloaded45    
    Comments [Add]    

Recommend this journal