Impact Factor 2019 : 1.903 (@Clarivate Analytics)
  • Users Online: 107
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 10  |  Issue : 6  |  Page : 281-292

Response surface methodology-based optimization of ultrasound-assisted extraction of β-sitosterol and lupeol from astragalus atropilosus (roots) and validation by HPTLC method


1 Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh-11451, Saudi Arabia
2 Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, KSA
3 Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Al Qassim, Saudi Arabia

Correspondence Address:
Perwez Alam
Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh-11451
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2221-1691.283942

Get Permissions

Objective: To optimize the ultrasonication method for efficient extraction of P-sitosterol and lupeol from the roots of Astragalus atropilosus using Box-Behnken design of response surface methodology (RSM), and its validation by high performance thin layer chromatography (HPTLC) method. Methods: Ultrasonication method was used to extract β-sitosterol and lupeol from Astragalus atropilosus (roots). RSM was used to optimize the different extraction parameters viz. liquid to solid ratio (10-14 mL/g), temperature (60-80 °C) and time (40-60 min) to maximize the yield of β-sitosterol and lupeol. The quantitative estimation of β-sitosterol and lupeol was done in chloroform extract of Astragalus atropilosus by validated HPTLC method on 10 cm × 20 cm glass-backed silica gel 60F254 plate using hexane and ethyl acetate (8:2, v/v) as mobile phase. Results: A quadratic polynomial model was found to be most appropriate with regard to R1 (yield of total extraction; R2/% CV = 0.994 8/0.28), R2 (β-sitosterol yield; R2/% CV = 0.992 3/0.39) and R3 (lupeol yield; R2/% CV = 0.994 2/0.97). The values of adjusted R2/predicted R2/signal to noise ratio for R1, R2, and R 3 were 0.978 2/0.955 1/48.77, 0.990 4/0.911 0/31.33, and 0.992 7/0.940 1/36.08, respectively, indicating a high degree of correlation and adequate signal. The linear correlation plot between the predicted and experimental values for R1, R2, and R3 showed high values of R2 ranging from 0.990 5-0.997 3. β-sitosterol and lupeol in chloroform extract of Astragalus atropilosus were detected at Rf values of 0.22 and 0.34, respectively, at X max = 518 nm. The optimized ultrasonic extraction produced 8.462% w/w of Rl, 0.451% w/w of R2 and 0.172% w/w of R3 at 13.5 mL/g liquid to solid ratio, 78 C of temperature and 60 min of time. Conclusions: The experimental findings of RSM optimized extraction and HPTLC analysis can be further applied for the efficient extraction of β-sitosterol and lupeol in other species of Astragalus.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed396    
    Printed20    
    Emailed0    
    PDF Downloaded107    
    Comments [Add]    

Recommend this journal