Impact Factor 2019 : 1.903 (@Clarivate Analytics)
  • Users Online: 91
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 10  |  Issue : 4  |  Page : 147-155

A novel polyherbal formulation containing thymoquinone attenuates carbon tetrachloride-induced hepatorenal injury in a rat model


1 Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah-21589, Kingdom of Saudi Arabia
2 Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P. O. Box 80402 Jeddah-21589, Jeddah, Kingdom of Saudi Arabia
3 Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
4 Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
5 Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
6 Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Kingdom of Saudi Arabia
7 Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, 110062, India

Correspondence Address:
Aftab Ahmad
Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah-21589
Kingdom of Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2221-1691.280292

Get Permissions

Objective: To evaluate a novel polyherbal formulation (BSVT) containing the standardized extracts from the leaves of Boerhavia diffusa, Solidago virgaurea, Vitex negundo, and thymoquinone in CCl4 induced hepatorenal toxicity in rats. Methods: A total of 36 rats were divided into six groups including normal control, CCl4 (2 mL/kg, i.p.), CCl4 (2 mL/kg, i.p.) + Cystone® (750 mg/kgp.o.), CCl4 (2 mL/kg, i.p.) + BSVT (25 mg/ kg, p.o.), CCl4 (2 mL/kg, i.p.) + BSVT (50 mg/kg, p.o.), and CCl4 (2 mL/kg, i.p.) + BSVT (100 mg/kg,p.o.). All treatments were given for four weeks. Serum levels of aspartate transaminase, alanine transaminase, alkaline phosphatase, cholesterol, total protein, serum urea, blood urea nitrogen and creatinine were assessed. Superoxide dismutase, malondialdehyde, and glutathione peroxidase were evaluated in tissue homogenate. The histopathological study of liver and kidney tissues was also done. Results: Aspartate transaminase, alanine transaminase, alkaline phosphatase, cholesterol, serum urea, blood urea nitrogen and creatinine were significantly elevated (P<0.001) while total protein was considerably reduced in the CCl4 group as compared to the normal control (P<0.001), which indicated hepatorenal toxicity. In addition, superoxide dismutase and glutathione peroxidase activities were significantly decreased (P<0.001) while malondialdehyde levels were increased markedly (P<0.001). Treatment with BSVT formulation recovered these parameters towards a normal level in a dose-dependent manner. Conclusions: BSVT formulation ameliorates the hepatorenal toxicity in a dose-dependent manner. Furthermore, clinical studies are required to confirm its efficacy.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed790    
    Printed43    
    Emailed0    
    PDF Downloaded327    
    Comments [Add]    

Recommend this journal