Impact Factor 2019 : 1.903 (@Clarivate Analytics)
  • Users Online: 105
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 10  |  Issue : 9  |  Page : 387-396

Antidiabetic effect of Chrysophyllum albidum is mediated by enzyme inhibition and enhancement of glucose uptake via 3T3-L1 adipocytes and C2C12 myotubes


1 Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Health and Allied Sciences, Ho; Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
2 Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
3 Department of Molecular Medicine, School of Medical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
4 Department of Molecular Medicine, School of Medical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi; Department of Basic and Applied Biology, School of Sciences, University of Energy and Natural Resources, Sunyani, Ghana
5 Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana

Correspondence Address:
Benjamin Kingsley Harley
Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Health and Allied Sciences, Ho; Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi
Ghana
Login to access the Email id

Source of Support: This work was supported by some funds from KNUST Research Fund (KReF), Conflict of Interest: None


DOI: 10.4103/2221-1691.290129

Get Permissions

Objective: To investigate the in vivo and in vitro antidiabetic potential of Chrysophyllum albidum. Methods: The effects of oral treatment with hydro-ethanolic extract (125, 250 and 500 mg/kg) of the stem bark of Chrysophyllum albidum and glibenclamide for 21 d on glucose level, serum enzyme markers for liver function, lipid profile, total protein, serum urea, serum creatinine, and body weight were evaluated in experimental diabetic rats administered with 45 mg/kg of streptozotocin. In vitro assays including glucose uptake in C2C12 cells and 3T3-L1 adipose tissues, α-glucosidase and α-amylase inhibition were employed to evaluate the possible mechanism of hypoglycemic action of the extract. DPPH and nitric oxide radical antioxidant activity of the extract was also measured. Results: The increased levels of blood glucose, triglycerides, low- density lipoprotein, total cholesterol, serum aspartate, and alanine transaminases, creatinine, and urea in the diabetic animals were reduced significantly (P<0.01) after treatment with Chrysophyllum albidum extract. The decreased total protein and high-density lipoprotein concentrations were normalized after treatment. In addition, the extract significantly (P<0.01) increased the transport of glucose in 3T3-L1 cells and C2C12 myotubes and exhibited considerable potential to inhibit α-amylase and α-glucosidase. It also demonstrated potent antioxidant action by scavenging considerably DPPH and nitric oxide radicals. Conclusions: Chrysophyllum albidum stem bark extract exhibits considerable antidiabetic effect by stimulating glucose uptake and utilization in C2C12 myotubes and 3T3-L1 adipocytes as well as inhibiting the activities of α-amylase and α-glucosidase.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed425    
    Printed13    
    Emailed0    
    PDF Downloaded150    
    Comments [Add]    

Recommend this journal